

Copyright
Preface

Who this book is for
What will you learn?
What this book covers
Conventions used
Disclaimer
About the author

Intro: The importance of a good preparation
Game engine
Graphics
Music and SFX
Miscellaneous
Why to create a space shooter?

First: Prepare the workspace
Version control
Blender
Godot

Second: The high-level concept
The basic sketch
Create the first model

Third: Prepare the first scene
The game screen
Player’s ship
Materials
Game manager
Background

Fourth: Enemies, layers, collisions
Asteroids
The system of collisions
Layers and masks
Player’s destruction

https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.8qgaj6melkhg
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.oynzzirmhk91
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.n3fos9mzshqa
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.nll5s2ohxtam
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ycc279df2p43
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.xygrv518uvfo
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.lomkdq8xp6zz
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.mkl1e395xvtz
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ve687k5mm6b
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.otk1nj5otr9x
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.pbsb8llxduyg
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.kt62o86ls0xe
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.r3ttfifb18ym
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.kjjj1cfolrir
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.xnelp247e52p
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.kw79yah43y4r
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.g5kbyz4rg06j
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.yrg3isba65rz
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.394c2jbty86n
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.9z1v1vyi9009
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.b5ajt3v6b32p
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ot2hdjetoe56
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.dkyfhli9iaid
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.haqp9yglg8j5
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.uwac7pfx386x
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.f18a7lv0p52b
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.f0qlfszerhrc
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.97vpdtu57th5
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.5vnigq2xf1rg
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.nw82e9lh9hco
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.kcjpnkjv0xc3
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.sjhbkwmchjhz

Shoot the enemies
Hits, explosions, and more sounds

Fifth: Improve the player’s ship
Movement tilt
Accelerate
Modules and debris
Shield
Calculate collisions and update HUD
Flash shield and player on hit
Jet flames
Bullet trails

Sixth: Create the first level
Design the system of levels, waves, and enemy behaviors
Implement a level loader
Create enemy ships with weapons
Spawn some power-ups
Launch homing missiles
Add a boss with multiple weapons and HUD
Shoot player’s missiles
Optimize level loading and preparation

Seventh: Game workflow
Menu screen
Pause game
Settings
Window size
Gamma correction
Vertical synchronization
Audio mixer
Internationalization and localization
Splash screen and icon
Key bindings
Intro scene and music

Eighth: Export and release your game
Leverage Godot’s export features
Optimize the game file size

Ninth: More game ideas

https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.67gjosrcec6f
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.c7infvelmo4i
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.z35643bl19of
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.khr8nrz66x1g
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.5yhzbj2w7ext
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.8m75co9ko5ix
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.hhtxz7scdmzp
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.omw3ocg8rmdf
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ypvzfzaf1qx5
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.e382ty9lolxv
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.25sivhb2h703
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.94dbgn97f8g6
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.sax01xih1txy
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.exprimg98nr3
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ddf55hrpwyqr
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.z8zahfefwti4
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.3v5m3iayb3vn
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.usceqc563rwe
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.vus8gzrzj5c7
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.p5vsozhr0nh3
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.wwztiui77tu
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.76qyfpngyfu8
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.486a2m3h45kd
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.bha5etwqfhdz
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.1rdifxtkmdpy
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.roix7dfmpavu
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.d0h9gtxee89d
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.y4xb305src4h
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.nyp1admpweb7
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.wyqagyc0nrn2
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.8jkr4tnkvv8l
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.hixj60rg1ur6
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.kyonmkvrvchc
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.bi07wtggme9n
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.8d44qzpiglo6
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.u89rp6ynesjj

Level tree
Object behavior
Scenario structure
Achievements
Score and leaderboards
Animated shield
Mouse cursor
Skip the intro scene

Epilogue
Appendix 1 - Modeling in Blender

Prepare an empty scene
Add a mesh
Transform
Edit Mode
Select Mode
Extrude
Scale
Move
Rotate
Inset
Loop Cut
Bevel
Conclusion

Appendix 2 - Godot 4 overview
Game structure
User interface
Scripting language

https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.d928ncq2cryj
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.c24g4aq65e0l
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.vxlcpkxejlk
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.te6wjjqfxqyl
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.301ecpqkclwl
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.1jhc13nn3m9z
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.x69bggtagjbs
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.1h9csy40g2u3
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.trw5qv41uake
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.7huixn8ay30y
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.vfl0tms59179
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.vyygzbn2p36r
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.czlfcrbi9bq0
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.3cp838ns4twt
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.4wg2cqfu1b02
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.bx5yzzlxpaqu
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.i1ke9c862ri4
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.ayvledq4zik0
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.f63l3mr5j5kt
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.5fz9vqi16tdl
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.at0hfohn4ddp
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.odrzl4xr6me3
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.gtgt4lw22te9
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.cy21v97m1aqi
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.z0o1duybc7vi
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.nik6lvh8t8j
https://docs.google.com/document/d/1Omo6snBD61d7Ph8F6sWu844QitT2Z6fKvDXstXcCcWA/edit#heading=h.3fmu99206xri

Copyright
Copyright © 2023 Filip Rachůnek, all rights reserved.

No part of this book may be reproduced in any form or by any electronic or
mechanical means, including information storage and retrieval systems, without
permission in writing from the author.

Preface
Are you interested in venturing into game development and creating your very own
computer game? Thankfully, there is an abundance of freely available tools,
frameworks, assets, and resources at your disposal, making the process easier than
ever before. This practical book offers you the opportunity to gain firsthand
experience in utilizing Godot 4 and crafting your own code using GDScript, a
user-friendly and easy-to-learn language tightly integrated with the Godot Engine.

Unlike a mere theoretical book that only covers the features of a game engine and
provides a few basic tips for starting a project, this book takes a different approach.
It doesn't leave the reader to face the daunting battle against numerous bugs and
difficulties on their own. Every single paragraph, every edge-case tip, every
suggestion of a possible workaround is based on my hands-on experience with
developing my own game, creating assets for it myself, and continuous testing and
debugging on Windows and Mac simultaneously. The official documentation may
not provide all the necessary details, and some of these omissions can be quite
bothersome. However, this book aims to assist you in overcoming these obstacles
effortlessly, allowing you to concentrate on the core aspects of game design and
development with a sense of freedom.

Just a few examples of useful tips you will learn here:

1. After your friend installed your game on his computer, he promptly informed
you about the choppy and stuttering performance, along with significant FPS
drops within the initial 20 seconds of gameplay. Why is it happening, and how
can you prevent it?

2. You created a cool-looking particle effect that works perfectly on Mac, but
displays ugly visual artifacts on Windows. What can you do about it?

3. The game showcases an interactive explosion using a shader material, and you
intend to animate specific attributes such as speed, color palette, smoke effect,
and more. Unfortunately, when multiple instances of the explosion are added to
the scene, they all animate identically. How can you ensure that each explosion
behaves uniquely?

4. Godot provides a simple way to pause the game, but it doesn’t affect animated
shader materials. What can you do to pause everything?

5. What is the most efficient method to consistently monitor the statistics of the
game scene, enabling you to quickly detect any leaks before they escalate into
significant issues in the future?

I have created and recorded a video course on YouTube to supplement the book. If
you're interested in observing the game creation process in action, you can visit the
provided URL to watch it for free: https://www.youtube.com/@FencerDevLog

Remember to leave a comment! I greatly appreciate receiving feedback and
suggestions to enhance the tutorial. Your input is valuable to me and helps me
improve.

Who this book is for

Short answer: Anybody who is open to learning and unafraid of exploring new
concepts.

Long answer: I firmly believe that anyone, regardless of their proficiency in coding
basic programs or scripts, can effectively complete a game project. The book aims to
facilitate the learning journey by providing detailed explanations, accompanied by
helpful screenshots and code examples, ensuring that each step is comprehensible
and accessible to all.

While having prior experience with Godot and Blender is beneficial, it is not
mandatory for following the content. By leveraging both the book and the
accompanying video course, you will receive comprehensive guidance on every
aspect required to develop and publish your own game. Having a foundational
understanding of GDScript would be beneficial for comprehending the code
examples.

What will you learn?

Upon completing the book, you will possess a functional game that can be run and
played, allowing you to make additional improvements as desired. Equally crucial is
your understanding of the underlying principles guiding this process. You will
gain insight into various alternative approaches to the challenges encountered in
game development, comprehending their advantages and disadvantages.
Furthermore, you will have a collection of unique assets at your disposal, along
with a clear understanding of their creation and purpose. Finally, you will discover
that the essential requirements to embark on your project are solely your time,

https://www.youtube.com/@FencerDevLog

patience, and enthusiasm. No additional financial investment is necessary, making
it an accessible endeavor for all.

The game development process outlined in the book is not the sole method for
creating a game in Godot. However, it serves as a guide to understanding the
fundamental principles of Godot that can be applied to various other types of games.
Embrace experimentation without fear - in most situations, there are multiple
solutions available, allowing you to discover the style that aligns best with your
preferences and needs.

What this book covers

1. Prepare the workspace: Emphasizes the significance of utilizing a version
control system, and assists you in properly setting it up across various
platforms. Additionally, it provides instructions on preparing the environment
for Godot and Blender, ensuring seamless integration between the two tools.

2. The high-level concept: Provides an overview of the essential logic and
workflow of the game, along with detailed, step-by-step guidance on
constructing a modular model for the player's ship. It also explains why we
prefer creating assets in a 3D environment and then projecting them onto a 2D
plane instead of using sprites or pixel art. It discusses the reasons behind this
choice and why it works better for the project.

3. Prepare the basic scene: Encompasses the process of constructing the initial
scene for our game, including the setup of lights, camera, dynamic background,
and fundamental game objects. Moreover, it explores multiple techniques for
creating and applying materials to models.

4. Enemies, layers, collisions: Describes a process that involves several steps to
create an asteroid model and integrate it into a game. It also includes
configuring the collision system, managing object destruction, implementing
shooting mechanics, and utilizing particle and shader systems to generate
realistic explosions.

5. Improve the player’s ship: Improves the player's ship model and enhances its
behavior to make it more advanced and visually appealing. This includes
incorporating modular components for breaking up the ship, implementing a
shield mechanism, emitting flames from the engines, and adding trails to
bullets, among other enhancements.

6. Create the first level: Shows how to develop a versatile level system that can
be applied universally. It covers aspects such as enemies shooting different
types of projectiles, incorporating power-ups, implementing homing missiles,
and creating a formidable boss enemy. Additionally, the chapter offers several
tips for optimizing performance throughout the development process.

7. Game workflow: Takes you step by step through the process of managing
multiple scenes in a game, including the introduction, menu, and settings
screens, and demonstrates how to smoothly transition between them. It explores
various aspects such as incorporating music and sound effects, implementing
game localization for different languages, setting up customizable key bindings,
and integrating a sophisticated animation system.

8. Export and release your game: Outlines the process of preparing a finished
game for exporting and sharing with others. It encompasses a range of
techniques and suggestions to reduce the file size of the exported game, making
it more efficient for distribution.

9. More game ideas: Proposes and illustrates supplementary concepts to enhance
the appeal of your game for the audience. Accompanying the suggestions are
code snippets or screenshots that emphasize the underlying concepts.

Appendix 1: Modeling in Blender

In this extra section, I share some of the most frequently used tips and tricks in
Blender that I utilized while creating my game. These valuable insights can help you
become proficient in creating assets and improve your game development abilities.

Appendix 2: Godot 4 overview

As the reader may be unfamiliar with the Godot environment, the second appendix
provides the basic description of the key elements such as scenes, nodes, editor,
inspector, and other essential tools commonly utilized and referenced throughout the
content.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates file or folder names, keywords, annotations, path names,
Godot/Blender labels, and user input. Example: “If you want to change the property
value in AnimationPlayer, use the prefix @export to add it to Inspector.”

A block of code:

func get_all_children(in_node, array = []):

array.push_back(in_node)

for child in in_node.get_children():

array = get_all_children(child, array)

return array

Bold: Denotes a new term, a significant word, or any onscreen text that catches your
attention. For instance: “To provide an additional layer of engagement, we will
include an achievement system.”

Italic: Utilized to add captions to screenshots and provide additional information or
comments in the form of side notes.

Tips or important notes:

Tip: When using Material Maker, it's important to ensure that the
generated material's final size is not larger than necessary. If your game
doesn't showcase extensive and highly detailed models, it's likely
unnecessary to attach textures with dimensions as large as 2048x2048
pixels.

Disclaimer

Although I have made every effort to ensure that the code examples and snippets are
error-free and typo-free, I cannot guarantee with absolute certainty that no bugs have
been overlooked. If you encounter any difficulties while following the instructions
to code your game, you are welcome to download or fork the sample project from
GitHub and utilize it as a point of reference. If there is any update to the code, it will
be updated in the GitHub repository as well.

https://github.com/FilipRachunek/space-shooter

In addition to completing the entire project, I also created snapshots of the game's
status after each chapter. These snapshots can be referenced in case you encounter
any mistakes while following the tutorial and are unsure how to fix the code. The
URL of the corresponding subproject is included in the header of each chapter.

About the author

I am Filip Rachůnek, a seasoned developer with over 25 years of full-time
experience. With a strong mathematical foundation and extensive programming
expertise, I have worked in diverse environments, ranging from large corporations to
fledgling startups. In addition to my technical skills, I have also gained valuable
leadership experience by guiding and mentoring developers in various technologies.
Throughout my career, I have successfully overseen the completion of multiple
projects.

Throughout my journey, game development has always been my true passion,
driving me to dedicate a significant portion of my personal projects to this field.
From crafting a Java-based board game server to creating engaging browser games
using JavaScript, I have explored various avenues. However, my discovery of Godot
has truly resonated with me, aligning perfectly with my creative vision. I firmly
believe that Godot is the ideal platform for me, and I am committed to embracing it
for the foreseeable future.

What else? I live in Prague, Czech Republic, with my beloved wife and three kids. I
like to compose music, play piano, study chess, and write books. And, of course, I
love to play games from other indie developers, and get inspired by them. :-)

Filip.Rachunek.com

https://github.com/FilipRachunek/space-shooter
https://filip.rachunek.com/

Intro: The importance of a good preparation
Before initiating our work, it is of utmost importance to conduct some preliminary
research and assess the available tools for building our game. The objective of this
tutorial is to commence the project with little to no financial investment, ergo our
emphasis will be on utilizing free software options.

Game engine

All right, this book is about Godot, so I won’t pretend that I am going through some
decision-making process now. The decision was already made. However, it could be
intriguing to explore the factors that influenced my choice of Godot over other
well-known game engines.

Before delving extensively into Godot, I conducted several experiments using Unity
and Unreal Engine. Undoubtedly, both of these engines are exceptional and likely a
superior choice for large teams due to their Pro and Enterprise licensing options.
However, the concept of a lone developer is also widely embraced, and there are
numerous advantages to undertaking every aspect of game development
independently. By not depending on team members, you retain complete ownership
of the profits and gain a comprehensive understanding of the game from multiple
perspectives, among other benefits.

1. Open-source and free: Godot is an open-source game engine released under
the MIT license, which means it's free to use and modify. This makes it an
attractive option for independent developers or those on a tight budget. There
are no strings attached. When you create a game using Godot, you retain
complete ownership of everything without any commissions or paid licenses
involved.

2. Lightweight and efficient: Godot is known for its lightweight nature and
efficient performance. It has a small installation size, quick startup times, and
runs well on lower-end hardware. This makes it suitable for projects with
limited resources or for targeting platforms with lower specifications.

3. Ease of use and beginner-friendly: Godot offers a user-friendly interface and
an intuitive visual scripting system that allows developers to create games
without writing code. It also supports traditional programming languages like

GDScript (Python-like), C#, and C++, making it accessible to developers with
different skill levels.

4. Community and documentation: Although Godot has a smaller user base
compared to Unity or Unreal Engine, it has a dedicated and passionate
community. The community actively contributes to documentation, tutorials,
and asset sharing, providing support and resources to developers. At the time of
writing, the official Discord server of Godot boasted nearly 64,000 members,
with the beginner-focused channels being among the most actively utilized.

5. Collaboration and integration: Godot integrates smoothly with various free
tools, particularly Blender. This collaboration proves highly advantageous,
particularly considering the limited availability of official assets in Godot's
asset store compared to Unity or Unreal. However, this situation encourages us
to develop our own assets, resulting in a game that is entirely unique in all
aspects.

Godot 4.0.3

Graphics

Blender can be considered the optimal choice for individuals who prefer not to
invest in a commercial product. It encompasses a comprehensive set of features,
allowing users to perform various tasks such as 3D modeling, UV mapping,
texturing, material creation, rigging, and animation.

Using Blender for creating 3D models in your game offers several advantages:

1. Open-source and Free: Blender is an open-source software, meaning it is
freely available for anyone to use. This eliminates the need for costly software
licenses, making it an accessible option for indie developers or those on a tight
budget.

2. Versatile and Powerful: Blender is a feature-rich 3D modeling tool with a
wide range of capabilities. It supports various modeling techniques, including
polygonal modeling, sculpting, and procedural modeling. It also provides
advanced features for texturing, rigging, animation, and rendering, giving you a
comprehensive suite of tools to create complex and visually appealing 3D
models.

3. Active Community and Resources: Blender has a large and active community
of users and developers. This means you can easily find tutorials,
documentation, and helpful resources to learn and strengthen your skills. The
Blender community is known for its willingness to share knowledge and
provide assistance, making it a supportive environment for beginners and
experienced artists alike.

4. Integration and Interoperability: Blender is designed to work well with other
software and game engines. It supports common file formats for importing and
exporting, allowing you to seamlessly integrate your 3D models into various
game development pipelines. Blender is also compatible with industry-standard
formats, such as FBX and OBJ, enabling smooth collaboration with other
artists or game development teams.

5. Constant Development and Updates: Blender is continuously being
developed and updated by a dedicated team of developers and volunteers. This
means you can expect regular updates, bug fixes, and new features that enhance
your modeling workflow and keep up with the latest industry standards.

Blender 3.6

In addition to Blender, I regularly utilize various other free applications and tools in
my work. For instance:

1. For creating occasional 2D graphics like textures and palettes, I rely on GIMP.
However, there are several other free alternatives available, such as Krita or
the online tool Pixlr.

2. Throughout my journey towards completing a game project, I have come across
numerous other free resources that prove to be incredibly useful and
convenient. For example:
a. Laigter (normal map generator)
b. Material Maker (procedural material tool with its own asset repository)
c. NormalMap Online (online normal map generator)
d. DeepBump (Blender plugin to generate normal maps using ML)
e. Free assets (models, textures, materials):

i. ambientCG
ii. sharetextures
iii. TextureCan
iv. 3D Textures

https://azagaya.itch.io/laigter
https://rodzilla.itch.io/material-maker
https://cpetry.github.io/NormalMap-Online/
https://hugotini.github.io/deepbump
https://ambientcg.com/
https://www.sharetextures.com/
https://www.texturecan.com/
https://3dtextures.me/

That was the first 16 pages of the introduction to the topic. Now, we will skip to the
third chapter, from which we will show a part related to importing and starting the
player's ship.

Third: Prepare the first scene

What we will learn in this chapter:

1. 3D scene creation.
2. Designing the debug overlay.
3. How to create a 2D layer over a 3D scene.
4. Mapping keys to custom actions.
5. Working with shared materials.
6. How to structure the code of our game.
7. Creating a dynamic star field background.

GitHub project: The end of the chapter 3

(...)

Player’s ship

Our approach will involve establishing the ship as an essential component within the
main scene, ensuring that the ship's node remains consistently present in the scene
tree. During the later phase of the project, we will introduce dynamic incorporation
of the ship, considering the specific requirements of particular levels in the scenario.

1. Drag your exported ship file player.glb to the folder models. Godot should
import the model and extract the texture (palette) as a standalone image.

https://github.com/FilipRachunek/space-shooter/releases/tag/0.3

2. Right-click on player.glb, and select New Inherited Scene. A root node
player will appear in the Scene panel. Right-click this node, select Change
Type, and change in to CharacterBody3D. This is a special class provided by
the Godot Engine, and it will help us handle the ship’s movement and
interactions. Also, you should see the ship’s modules (body, wings, engine, etc.)
as child nodes of this root.

3. To ensure that the ship won’t leave the screen, we will soon add the boundaries
to the scene. However, the model won’t interact with them until we add a
collision shape, so let’s do it now. Add CollisionShape3D as another child
node of the root, display its properties in Inspector, and assign a shape - a
simple sphere should be fine for now. Open the 3D editor and modify the
collision shape size to cover the ship.

4. CharacterBody3D will solely be utilized for movement and collision with the
boundaries, while all other interactions will be managed within the code.
Consequently, we will need to duplicate our collision shapes and associate them
with an Area3D node. After we have familiarized ourselves with signals and
event handling, I will provide a detailed explanation of this approach.

5. Save the scene as player.tscn to the folder scenes.
6. Right-click the root node, and select Attach Script. Create a new script

player.gd. Godot will use a CharacterBody3D template to implement the
basic movement functionality in the code.

7. Open the scene main.tscn, and drag player.tscn to the root as a child
node. The ship will appear in the 3D editor. If desired, you can utilize the move
gizmo to adjust the initial position of the ship. However, ensure that you do not
move it outside the camera view. It is important to maintain a Y coordinate of 0
(zero).

8. Open the script player.gd. It should contain the pre-generated code related to
CharacterBody3D:

extends CharacterBody3D

const SPEED = 5.0

const JUMP_VELOCITY = 4.5

Get the gravity from the project settings to be synced with RigidBody

nodes.

var gravity = ProjectSettings.get_setting("physics/3d/default_gravity")

func _physics_process(delta):

Add the gravity.

if not is_on_floor():

velocity.y -= gravity * delta

Handle Jump.

if Input.is_action_just_pressed("ui_accept") and is_on_floor():

velocity.y = JUMP_VELOCITY

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay

actions.

var input_dir = Input.get_vector("ui_left", "ui_right", "ui_up",

"ui_down")

var direction = (transform.basis * Vector3(input_dir.x, 0,

input_dir.y)).normalized()

if direction:

velocity.x = direction.x * SPEED

velocity.z = direction.z * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

velocity.z = move_toward(velocity.z, 0, SPEED)

move_and_slide()

9. As evident from the script, there are certain functionalities that are unnecessary
for our ship. For instance, since there is no gravity in space and the ship won't
be able to jump, we should eliminate the corresponding sections from the code.
The revised version of the code should appear as follows (we increased the
constant SPEED as well):

extends CharacterBody3D

const SPEED = 30.0

func _physics_process(delta):

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay

actions.

var input_dir = Input.get_vector("ui_left", "ui_right", "ui_up",

"ui_down")

var direction = (transform.basis * Vector3(input_dir.x, 0,

input_dir.y)).normalized()

if direction:

velocity.x = direction.x * SPEED

velocity.z = direction.z * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

velocity.z = move_toward(velocity.z, 0, SPEED)

move_and_slide()

10. Since we finally have the player’s ship in the scene, we can display its data in
the debug overlay:

a. Get back to the main scene, right-click the root node (MainRoot), and
attach a new script main.gd. Open the script, and add to the top (after
extends Node3D):

i. @onready var debug_overlay = $debug

ii. The value $debug may vary, depending on the node name in the tree.
Simply drag the node to the code, and it will be filled automatically.
Do the same for the player’s node:

iii. @onready var player = $player

b. Add this line to the function _ready():
i. debug_overlay.init(player)

11. To ensure smooth performance and monitor the scene's performance as we
introduce new objects and enhancements to the ship (such as additional
weapons or particle-based jet flames), it would be beneficial to have real-time
access to various information within the Godot 3D editor:
a. Click the three dots in the top-left corner (the label Perspective is

probably displayed next to it).
b. Enable View Information and View Frame Time.
c. Voilà! We can observe CPU Time, GPU Time, FPS, and other important

statistical data.

Tip: If you press Ctrl while dragging a node to the script, it will be dropped
with a full @onready declaration.

Run the project. Since we have already completed the necessary setup by filling in
the Main Scene property, Godot will not prompt for any additional information and
will display the game window instantly. You will immediately see our ship
positioned in the center of the screen. To maneuver the ship, simply press the
default move keys, which are the arrow keys on your keyboard.

By observing the debug overlay, you will notice that it displays the ship's current
position and rotation. This allows us to confirm that the Y coordinate remains
consistently set to 0. To proceed, move the ship to each of the four edges of the
game window and take note of the specific coordinates. Record the X coordinate for
the left and right edges, as well as the Z coordinate for the top and bottom edges.
We will utilize these values shortly to establish the boundaries for the ship's
movement.

Move the ship and observe the coordinates on the debug overlay.

Based on our observation of moving the ship to the bottom-right corner and reading
the coordinates 58.84496 and 32.76777 from the debug overlay, we can conclude
that the boundaries can be approximated as (-60, 60, -35, 35). These boundary
values will remain consistent even if the game window is resized, thanks to the
project settings we configured earlier in this chapter.

While the ship is currently movable using the default arrow keys, you may prefer to
utilize other keys, such as the commonly usedWASD configuration, for controlling
the ship. Fortunately, this can be easily configured in the project settings:

1. Open Project > Project Settings, and switch to Input Map.
2. Add new actions: move_up, move_left, move_down, move_right.
3. Click the + (plus) icon next to each of them, and press the respective key (W,

A, S, D) to assign it.

4. Close the dialog, and open the script player.gd. In the function
_physics_process, find the line containing Input.get_vector, and
replace the previous actions with the new ones.

var input_dir = Input.get_vector("move_left", "move_right", "move_up",

"move_down")

After remapping the keys for ship control, there is one more important issue to
address. Currently, the ship can move outside the boundaries of the screen and travel
indefinitely in any direction. However, according to the logic of our game, it is
crucial for the player's ship to remain within the visible viewport at all times. To
ensure this, we need to implement static boundaries for the ship's movement.

1. Add a new child node Node3D to the scene main.tscn. Rename it to
Boundary.

2. Right-click Boundary, and create a child node LeftWall. This time, the type
will be StaticBody3D, as we want the player’s ship (CharacterBody3D) to
collide with it.

3. The node LeftWall doesn’t have an impact on the scene until we assign a
collision shape to it. Right-click LeftWall, and create a child node of the type
CollisionShape3D.

4. Open the 3D editor, select LeftWall, and move it to the left of the ship.
Observe the x-coordinate of the property Transform > Position in
Inspector to make sure that you set it to the value you previously took from
the debug overlay. Or even better, write the value to this field manually. In my
case, it was -60.

5. Now, select the collision shape of the wall. In Inspector, set the shape to
BoxShape, click it, and adjust the size to form a wall. I used these values:
a. x = 1, y = 20, z = 100.

Good! We have successfully implemented the left wall to restrict the ship's
movement in that direction. Now, let's repeat the same process to create three more
walls: the top, right, and bottom boundaries. It is crucial to ensure that these walls
intersect at the corners, leaving no gaps that would allow the ship to escape the
designated playing area.

Once you have completed the creation of the four boundaries (left, top, right, and
bottom), it is time to run the game and confirm that the ship is unable to pass
through these invisible walls. Launch the game and carefully observe the ship's
movement to ensure that it remains contained within the designated play area, as
defined by the boundaries you have implemented.

Tip: To ensure collisions with fast-moving objects like bullets are detected
even in cases of a slow FPS (frames per second), it is recommended to make
the invisible walls thick enough. This allows for a wider collision area and
increases the chances of accurate detection. Implementing a fail-safe
measure by periodically checking the bullet's position against the boundaries
can be helpful. However, it is not necessary to perform this check during
every frame, as it can impact performance.

We will showcase the implementation of this approach in the upcoming fourth
chapter, where we introduce enemies and projectiles to the game structure.

Another fast-forward - this time to the fifth chapter - gets us to the instructions on
how to utilize Godot’s particle systems to build realistic flames behind the ship’s jet
pipes.

Fifth: Improve the player’s ship

What we will learn in this chapter:

1. How to rotate smoothly around one axis.
2. The axis lock and its usage.
3. How to duplicate modules to create a debris.
4. Adding the second light source to the scene.
5. Creating a shield that flashes on hit.
6. Using tweens to enhance progress bars in HUD.
7. How to leverage particles to generate jet flames.
8. Creating bullet trails with 2D elements.

GitHub project: The end of the chapter 5

(...)

Jet flames

While the ship's movement may not be entirely realistic, and the engines located at
the bottom part of the model may not realistically propel it in all directions, it would
still be visually appealing to incorporate some form of jets. This will allow us to
display an animation with a slight touch of randomness. To achieve this effect, let's
create another particle system.

1. Add a child node Node3D to the player’s ship’s root. Name it Flames.
2. Add GPUParticles3D as a child node to Flames. Call it Left Flame. And yes,

unlike in the sparks effect, we really use the GPU particles here.
3. Open the 3D editor, and move this node to the end of the exhaust pipe of the

left engine. Keep the y-coordinate at 0. If the particle gizmo (the white cloud)
is obstructing the view, you can disable it. In the 3D editor, find View >

Gizmos > GPUParticles3D and deselect it.

https://github.com/FilipRachunek/space-shooter/releases/tag/0.5

Now that the GPUParticles3D node is connected to the player's ship, the jet flames
will move in tandem with the ship's motion. However, it appears that the particles
are not currently visible. To address this issue, please ensure the following steps are
taken:

1. Click the node Left Flame to open the Inspector.
2. In the property Draw Passes, find Pass 1, and assign New QuadMesh.
3. Click the mesh, select Material, and create New StandardMaterial3D.
4. Click the material, and set the following properties:

a. Transparency > Transparency: Alpha.
b. Transparency > Blend Mode: Add.
c. Shading > Shading Mode: Unshaded.
d. Vertex Color > Use as Albedo: On.
e. Albedo > Color (keep the default color).
f. Billboard > Mode: Particle Billboard.
g. Billboard > Keep Scale: On.

5. Scroll up to the GPUParticles3D properties, find Process Material, and
assign New ParticleProcessMaterial.

6. Click the process material, and set these properties:
a. Emission Shape > Shape: Sphere.
b. Emission Shape > Sphere Radius: 1.
c. Direction > Direction: (0, 0, 1).
d. Direction > Spread: 0.

e. Gravity > Gravity: (0, 0, 0).
f. Initial Velocity > Velocity Min: 2.
g. Initial Velocity > Velocity Max: 10.
h. Angular Velocity > Velocity Min: 0.
i. Angular Velocity > Velocity Max: 40.
j. Linear Accel > Accel Min: 1.
k. Linear Accel > Accel Max: 5.
l. Angle > Angle Min: 0.
m. Angle > Angle Max: 360.
n. Scale > Scale Min: 0.1.
o. Scale > Scale Max: 1.
p. Scale > Scale Curve: New CurveTexture, add another point, and play

with the shape a bit. This step is optional, I believe that the flame would
look good anyway.

q. Color > Color Initial Ramp: New GradientTexture1D, and set up
some fiery color gradient - red, orange, brown tints.

7. Set the property Amount to 200. You can adjust the quantity of particles emitted
simultaneously to experiment and determine the ideal number required to shape
the flame according to your preferences.

8. Time > Lifetime: 0.3.
9. Drawing > Local Coords: On.
10. Drawing > Draw Order: View Depth.

And behold, the flame has arrived! If desired, you can further adjust the parameters
to fine-tune the effect, enhancing the color gradient or scaling it to your liking. Once
satisfied, you can create the other flame by duplicating this one:

1. Right-click the node Left Flame and select Duplicate.
2. Rename the duplicated node to Right Flame.
3. In 3D editor, move the right flame to the end of the right engine.

Despite our previous recommendation to prioritize CPUParticles3D, we chose to
utilize GPU particles for the jet flames. Why did we do that? This decision was
influenced by the observation that the flames, unlike dynamically generated sparks,
were manually added to the scene by creating a child node in the scene tree.
Consequently, the instantiation of the flames occurs before the scene is activated
and displayed. Interestingly, no visual problems were observed across different
platforms, suggesting that we can leverage all the features of GPUParticles3D
without concerns.

By modifying the Transparency setting in the particle's material, we must be aware
that the flame may become invisible when utilizing post-processing effects on the
game scene. For instance, if we replace the simple shield with a more intricate
shader that introduces visual distortion to objects behind it. This limitation arises
due to the sequential nature of the Godot rendering pipeline, which follows this
order of operations:

1. Draws all objects with solid material (no transparency at all).
2. Applies shaders that use SCREEN_TEXTURE to read from the screen buffer

(which contains only the elements from the previous step).
3. Draws the objects with transparent materials.

Tip: To resolve this issue, one possible solution would be to remove
transparency from the particles' material, effectively bypassing steps 4a and
4b in the particle building instructions. However, it's important to note that
this would result in a less visually appealing flame effect, as the quads
would simply be placed on top of each other without any color blending.
Additionally, this modification (with a shader material on the shield) could
potentially lead to a decrease in FPS. Ultimately, the decision of whether the
additional visual improvements are worth the effort is up to you to
determine.

As a next sample, let me include the section from the chapter six that describes how
we can add homing missiles to the pool of enemy objects.

Sixth: Create the first level

What we will learn in this chapter:

1. How to use Dictionary to define the lifecycle of enemies.
2. The way to load scripts dynamically in runtime.
3. Enhancing the level system with shooting and power-ups.
4. Creating 3D models from a text in Blender.
5. How to implement a homing missile to follow the player.
6. The logic behind the boss enemies.
7. How to use threads to improve the scene transition.
8. A trick to enforce the pre-compilation of shaders.
9. How to deal with Godot 4.1 thread safety checks.

GitHub project: The end of the chapter 6

(...)

Launch homing missiles

Until now, all enemies in the game have followed a vertical movement pattern from
the top to the bottom of the screen. As a result, players have been able to avoid
collisions with most enemies if they so desired. However, to intensify the level of
excitement and introduce an element of unpredictability, we will introduce a new
enemy type: the homing missile. Unlike other enemies, this missile will relentlessly
pursue the player's ship regardless of its movements, adding a heightened sense of
urgency and challenge to the gameplay.

1. Create a basic missile model in Blender by following the instructions from our
previous modeling sessions. Begin by constructing a long cylinder shape and
adding ring decorations to it. Then, employ common techniques such as
extruding and scaling to attach a missile head to the cylinder.

2. Export the final model as usual - glTF 2.0 without materials. You can reuse
the model from the associated GitHub project as well.

3. Import the missile model to Godot. Create a new inherited scene, change the
type to Area3D. Add a cylindrical collision shape to the scene. Select the

https://github.com/FilipRachunek/space-shooter/releases/tag/0.6

MeshInstance3D node, and assign a shiny metal material to Surface

Material Override. Save the scene as missile.tscn.

4. Copy the jet flame particle node from the scene player.tscn, paste it to the
missile scene. Resize the flame, and relocate it to the right position.

5. Select the root node, and attach the script enemy.gd. Open the panel Node >

Signals, find the signal area_entered, and double-click it to connect to the
script. Set the right groups (enemy, metal), collision layers (2) and masks (3).

6. Add the missile scene to the script tutorial.gd:

var missile_scene = preload("res://scenes/missile.tscn")

7. Within the enemy definition structure, we will add a new property called
target. This property will inform the game engine that the enemy is supposed
to track and follow the designated target as long as the target remains alive:

func get_missile_wave():

var wave = []

wave.append({

"enemy": missile_scene,

"spawn": {

"hit_points": 20.0,

"coords": Vector3(randf_range(-20, 20), 0,

GameManager.boundary.top),

"scale": Vector3(1.0, 1.0, 1.0),

"direction": Vector3(0, 0, 20.0),

"rotation": Vector3.ZERO,

"target": GameManager.player,

},

"timeline": []

})

return wave

8. Add one or more missile waves to the function init in tutorial.gd.

func init(node, more_scenes = []):

timeline.append({ "timestamp": 1, "wave": get_asteroid_wave() })

timeline.append({ "timestamp": 2, "wave": get_ufo_ship_wave() })

timeline.append({ "timestamp": 4, "wave": get_missile_wave() })

timeline.append({ "timestamp": 4, "wave": get_missile_wave() })

9. Implement the homing algorithm in the script lifecycle.gd:
a. Save the initial speed to a new variable in init.
b. Assign spawn.target to a new variable target.
c. If target exists and is valid, recalculate all parameters in every frame.

d. Compute to_target vector and use it to update current_direction (to
continue moving in this direction after the target was destroyed).

e. Calculate the direction angle (relative to Vector2.UP) and rotate the
missile around y-axis.

f. Utilize the move_toward function to update the position of the missile at a
consistent speed. This approach is simpler and less susceptible to errors
compared to using lerp for the same purpose.

var target

var speed

func init(root_node, enemy, _spawn, _timeline):

(...)

speed = current_direction.length()

if spawn.has("target"):

target = spawn.target

func process(enemy, delta):

(...)

if Utils.is_valid_node(target):

var to_target = target.global_position - enemy.global_position

current_direction = to_target.normalized() * speed

var direction_angle = Vector2(to_target.x,

to_target.z).angle_to(Vector2.UP)

enemy.rotation.y = direction_angle

enemy.global_position =

enemy.global_position.move_toward(target.global_position, delta * speed)

else:

enemy.global_position.x += current_direction.x * delta

enemy.global_position.z += current_direction.z * delta

Take a look at the game. Two missiles will emerge at the upper boundary of the
screen after four seconds, and they will track the player's ship until they are
eliminated.

Finally, we switch to the seventh chapter, namely the part about important system
settings inside the game - gamma correction, vertical synchronization, and audio
mixer.

Seventh: Game workflow

What we will learn in this chapter:

1. How to share WorldEnvironment settings across scenes.
2. The basic 2D layout of controls.
3. Creating simple transitions by rotating a light source.
4. How to pause and resume the game.
5. A trick to pause shaders by a trick with global uniforms.
6. How to set up, read, and write settings.
7. The audio mixer and working with multiple channels.
8. How to localize your game.
9. Using toggle buttons to redefine control keys.
10. Working with AnimationPlayer to create the intro scene.
11. How to play music in the background.

GitHub project: The end of the chapter 7

(...)

Gamma correction
As we are aware, different computers may have varying brightness and contrast
settings, which poses a risk of a scene appearing excellent on our own device but
barely visible on others. Considering this situation, it is essential to provide the
player with the option to adjust gamma correction. Specifically, we will be
modifying the Exposure value of the environment's Tonemap feature, as it closely
resembles the concept of gamma correction and is convenient to manipulate.

Since relying on mere estimations and hoping for the game to appear as expected is
challenging, it is important to incorporate a mechanism for instantly observing
changes. There are two approaches to accomplish this:

1. Add the Exposure slider to the game screen, and allow the player to adjust it
during the gameplay.

2. Display several game assets (ships, asteroids) on the settings screen to see the
Exposure changes on them.

https://github.com/FilipRachunek/space-shooter/releases/tag/0.7

In this tutorial, we will implement the second option.

1. Open the scene settings.tscn, and drag asteroid.tscn and
ufo_ship.tscn to the scene root as child nodes.

2. Adjust their coordinates (Node3D > Transform > Position) to display the
asteroid to the left and the ship to the right of the centered OptionsContainer.

3. Add this code to the script settings.gd to make the assets slowly rotate
around their respective centers:

@onready var asteroid = $asteroid

@onready var ufo_ship = $ufo_ship

func _ready():

(...)

spawn_asteroid()

spawn_ufo()

func spawn_asteroid():

var spawn = {

"hit_points": 20.0,

"coords": Vector3(0, 0, 0),

"scale": Vector3(1, 1, 1),

"direction": Vector3.ZERO,

"rotation": Utils.get_random_vector3_in_range(0.1, 1.0),

}

asteroid.init(self, spawn, [])

func spawn_ufo():

var spawn = {

"hit_points": 20.0,

"coords": Vector3(0, 0, 0),

"scale": Vector3(1, 1, 1),

"direction": Vector3.ZERO,

"rotation": Vector3(0, 0, 0.2),

}

ufo_ship.init(self, spawn, [])

4. Add two more elements to OptionsContainer:
a. Label: GammaLabel
b. HSlider: GammaSlider

5. Select GammaSlider to open Inspector, and set the property Max Value to
16 (which is the actual max value of the exposure). Also, change the property
Step to 0.01 to allow fine-grained changes.

6. Finally, find the signal value_changed in Node > Signals, and connect it
to a new function in settings.gd. Add this code to the script:

@onready var world_environment = $WorldEnvironment

@onready var gamma_slider = $CanvasLayer/OptionsContainer/GammaSlider

func _ready():

(...)

gamma_slider.value = options.tonemap_exposure if

options.has("tonemap_exposure") else 1.0

func _on_gamma_slider_value_changed(value):

options.tonemap_exposure = gamma_slider.value

OptionsManager.write_options(options)

world_environment.environment.tonemap_exposure =

options.tonemap_exposure

Start the game, click Settings, drag the bar Gamma Correction, and observe the
changes on the asteroid and the enemy ship.

By the way, you might have noticed that the game wrote two errors to the Errors
console:

The reason behind this behavior is the inclusion of two game objects, namely the
asteroid and UFO ship, within the Settings scene. However, the signal
enemy_spawned lacks a connection to any function, as _on_enemy_spawned is not
implemented in the settings.gd script. To address this, we can resolve the issue
by adding a dummy method to the script:

func _on_enemy_spawned(_enemy):

pass

Vertical synchronization

V-Sync (Vertical Synchronization) is a technique used in computer graphics to
synchronize the frame rate of a game with the refresh rate of the display. In Godot 4,
there are four different V-Sync modes available, each with its own pros and cons:

1. VSYNC_DISABLED
a. Pros: Disabling V-Sync allows the game to run at the maximum frame

rate supported by the hardware, resulting in smoother and more responsive
gameplay.

b. Cons: Without V-Sync, screen tearing can occur, where the display shows
parts of multiple frames simultaneously, leading to a disjointed visual
experience.

2. VSYNC_ENABLED
a. Pros: Enabling V-Sync eliminates screen tearing by synchronizing the

frame rate with the display's refresh rate. This results in a visually
coherent and tear-free image.

b. Cons: V-Sync can introduce input lag, as the game waits for the display to
refresh before presenting the next frame. This can reduce responsiveness,
especially in fast-paced games that require precise timing.

3. VSYNC_ADAPTIVE
a. Pros: Adaptive V-Sync dynamically adjusts the V-Sync behavior based on

the current frame rate. If the frame rate is below the display's refresh rate,

V-Sync is enabled to prevent tearing. If the frame rate exceeds the refresh
rate, V-Sync is temporarily disabled to reduce input lag.

b. Cons: Adaptive V-Sync can introduce occasional screen tearing when the
frame rate fluctuates near the refresh rate threshold. It also adds some
complexity to the rendering pipeline, which may result in a slight
performance overhead.

4. VSYNC_MAILBOX
a. Pros: V-Sync Mailbox displays the most recently rendered image in the

queue during vertical blanking intervals, while the rendering process
continues for other images. This technique effectively eliminates screen
tearing, ensuring a smooth visual experience.

b. Cons: By rendering frames as quickly as possible, this mode can
potentially reduce input lag, also referred to as the "Fast" V-Sync mode.
However, it's important to note that this reduction in input lag is not
guaranteed and can vary depending on the specific hardware and software
configuration.

The initial mode is taken from Project > Project Settings > General >

Display > Window > V-Sync. The default value should be VSYNC_ENABLED.

Many games provide only a disabled/enabled switch, and only these two options
were available in Godot 3. Since we work with Godot 4, we can enable all four
values to set in Settings. It would be helpful to provide a brief description of each
option for users who may not be familiar with V-Sync and its effects on gameplay.
This way, users can make informed decisions based on their preferences and
requirements.

Okay, that’s a lot of theory. From our perspective, the most straightforward approach
would be to keep the default value VSYNC_ENABLED until the player deliberately
changes it. Let’s add the corresponding elements to the UI:

1. Add the following code to the script options_manager.gd:

var v_sync_list = [

{ "mode": DisplayServer.VSYNC_DISABLED, "label":

"settings.vsync.disabled" },

{ "mode": DisplayServer.VSYNC_ENABLED, "label": "settings.vsync.enabled"

},

{ "mode": DisplayServer.VSYNC_ADAPTIVE, "label":

"settings.vsync.adaptive" },

{ "mode": DisplayServer.VSYNC_MAILBOX, "label": "settings.vsync.mailbox"

},

]

(...)

func set_v_sync_mode():

var options = read_options()

if not options.has("v_sync"):

options.v_sync = DisplayServer.VSYNC_ENABLED

DisplayServer.window_set_vsync_mode(options.v_sync)

write_options(options)

2. As evident, we utilize localization keys such as "settings.vsync.enabled"
instead of directly embedding English labels into the code. This approach
enables us to prepare the text for localization into different languages. We will
delve into this topic further in this chapter.

3. Add this line to _ready of the entry scene script (menu.gd):

OptionsManager.set_v_sync_mode()

4. Open the scene settings.tscn, and add the following elements as child
nodes of OptionsContainer:
a. Label: VSyncLabel
b. OptionButton: VSyncOptionButton

5. Select VSyncOptionButton, and connect the signal item_selected from the
panel Node > Signals.

6. Open the script settings.gd, and add the following code to handle the
changes and display current values when the scene is active:

@onready var v_sync_option_button =

$CanvasLayer/OptionsContainer/VSyncOptionButton

(...)

func _ready():

(...)

v_sync_option_button.clear()

index = 0

for v_sync in OptionsManager.v_sync_list:

v_sync_option_button.add_item(v_sync.label)

if v_sync.mode == options.v_sync:

v_sync_option_button.select(index)

index += 1

func _on_v_sync_option_button_item_selected(index):

var v_sync = OptionsManager.v_sync_list[index]

options.v_sync = v_sync.mode

OptionsManager.write_options(options)

OptionsManager.set_v_sync_mode()

Run the project, visit the Settings screen, and change the V-Sync option to
settings.vsync.disabled. After returning to the menu screen, proceed to start the
game. Upon doing so, you will notice that the FPS (frames per second) displayed in
the debug overlay is no longer limited by the refresh rate of your monitor. In the
case of my gaming laptop, the game exhibited a frame rate exceeding 1000 frames
per second.

Audio mixer

Godot's audio system offers great flexibility, allowing us to create multiple channels
known as buses, which serve as pathways for sound output. Through code, we have
the ability to control these buses. We can adjust their volume settings, add sound
effects, or even disable them to mute the respective channel entirely. In our case, we
will configure two buses: one for music and another for sound effects. We will then
bind these buses to their corresponding sliders in the Settings menu, providing
players with the ability to adjust the volume levels as desired.

1. Switch to the tab Audio at the bottom page of the Godot editor. You should see
the master bus.

2. Click Add Bus twice to add two more buses. Rename the first one to Music
and the second one to Sfx.

3. Open the scene sound_manager.tscn, and route all game sounds through the
Sfx bus. Select all AudioStreamPlayer nodes in the scene tree
(Shift-Click), find the property Bus in Inspector, and change the value to
Sfx.

4. Open the script sound_manager.gd, and add this code:

var master_bus

var music_bus

var sfx_bus

(...)

func _ready():

master_bus = AudioServer.get_bus_index("Master")

music_bus = AudioServer.get_bus_index("Music")

sfx_bus = AudioServer.get_bus_index("Sfx")

func set_master_volume(value):

the value is between 0 and 1

AudioServer.set_bus_volume_db(master_bus, linear_to_db(value))

func set_music_volume(value):

AudioServer.set_bus_volume_db(music_bus, linear_to_db(value))

func set_sfx_volume(value):

AudioServer.set_bus_volume_db(sfx_bus, linear_to_db(value))

5. An audio bus uses a decibel scale (logarithmic), so we need to calculate it from
linear values before applying. Godot provides a function called
linear_to_db, which is precisely what we’ve just used here.

6. Open the scene settings.tscn, add three more labels with slider options -
Master volume, Music volume, Sfx volume. Set the following parameters for
all of them in Inspector:
a. Min Value: 0
b. Max Value: 1
c. Step: 0.01
d. Value: 1

7. Go to Node > Signals, and connect the signal value_changed to a new
function in settings.gd for all three sliders. Add this code to the script:

@onready var master_volume_slider =

$CanvasLayer/OptionsContainer/MasterVolumeSlider

@onready var music_volume_slider =

$CanvasLayer/OptionsContainer/MusicVolumeSlider

@onready var sfx_volume_slider =

$CanvasLayer/OptionsContainer/SfxVolumeSlider

(...)

func _ready():

(...)

master_volume_slider.value = options.master_volume if

options.has("master_volume") else 1.0

music_volume_slider.value = options.music_volume if

options.has("music_volume") else 1.0

sfx_volume_slider.value = options.sfx_volume if

options.has("sfx_volume") else 1.0

func _on_master_volume_slider_value_changed(value):

options.master_volume = value

OptionsManager.write_options(options)

SoundManager.set_master_volume(value)

func _on_music_volume_slider_value_changed(value):

options.music_volume = value

OptionsManager.write_options(options)

SoundManager.set_music_volume(value)

func _on_sfx_volume_slider_value_changed(value):

options.sfx_volume = value

OptionsManager.write_options(options)

SoundManager.set_sfx_volume(value)

Run the game, and try to change Sfx volume to a position in the middle of the slider:

Then go back to the main menu, and start the game. The sound effects should be
much quieter than before.

Tip: Currently, we do not implement any positional audio; we simply play
the sound files as they were originally recorded. However, if you choose to
position the sound effects in the 3D space, the following approach can be
utilized:

1. Replace AudioStreamPlayer nodes with AudioStreamPlayer3D.
2. To ensure proper spatial location of a sound source, you can accomplish

it by attaching an instance of AudioStreamPlayer3D as a child node
to the specific node representing the sound's origin, such as the

explosion or bullet node. This way, when the sound is played, it will be
associated with and emanate from the corresponding node in the virtual
space.

3. If you find that the auditory experience doesn't meet your expectations,
it is probable that the original sound file was recorded in stereo, which
can cause conflicts with the 3D sound system. To resolve this issue, you
can convert the sound file to mono. Several free tools, such as
Audacity, are available to assist you with this conversion process.

(...)

You have reached the end of the excerpt from the book "Godot 4: From zero to full
game." I hope that what you have read so far has piqued your interest, and you
would like to learn more about game development in the Godot Engine.

Please visit my portfolio at https://Filip.Rachunek.com to learn how you can
purchase the full book, or email me at Filip.Rachunek@gmail.com.

Good luck with developing your games!

https://filip.rachunek.com
mailto:Filip.Rachunek@gmail.com

